585
edits
Line 117: | Line 117: | ||
[[file:AVNRT.png|thumb|400px|'''Figure 3.''' The mechanism of AV-nodal re-entry.<cite>ECGPedia</Cite>]] | [[file:AVNRT.png|thumb|400px|'''Figure 3.''' The mechanism of AV-nodal re-entry.<cite>ECGPedia</Cite>]] | ||
====Pathophysiology:==== | ====Pathophysiology:==== | ||
AVNRT is a regular arrhythmia relying on the dual AV-physiology for its maintenance. The AV-node usually has two pathways in these patients; a fast pathway with fast conduction times and a slow pathway which conducts slowly. The fast pathway has a longer refractory period than the slow pathway. Due to these characteristics re-entry formation is possible. Normally the impulse from the atria is conducted through the fast pathway to the ventricle. The impulse also travels through the slow pathway, but reaches tissue still in the refractory period at the end of the AV-node (as the fast pathway has already conducted the impulse and activated this part of the AV-node). When an extra premature atrial contraction occurs it encounters a refractory fast-pathway (which has a longer refractory period). It enters the slow pathway and when it reaches the end of this pathway it can conduct to the (now restored) end of the AV-node to the ventricles and back into the fast pathway. The result is a ventricular activation with a retrograde P-wave. If the slow pathway is restored when the impulse reaches the beginning (atrial side) of the fast pathway, the impulse can re-enter the slow-pathway and a re-entry mechanism is established. This is the mechanism of a typical AVNRT, which is found in 90% of the patient with an AVNRT. Two other forms of AVNRT exist that take a different route through the AV-node. Firstly there is an atypical AVNRT in which the impulse travels through the fast pathway and returns through the slow pathway. The result of this AVNRT is a retrograde P-wave which appears far from the QRS complex. Finally there is a rare AVNRT which in patients with two slow pathways. The impulse enters en re-enters through a slow pathway.<cite>Mazgalev</cite> | AVNRT is a regular arrhythmia relying on the dual AV-physiology for its maintenance. The AV-node usually has two pathways in these patients; a fast pathway with fast conduction times and a slow pathway which conducts slowly. The fast pathway has a longer refractory period than the slow pathway. Due to these characteristics re-entry formation is possible. Normally the impulse from the atria is conducted through the fast pathway to the ventricle. The impulse also travels through the slow pathway, but reaches tissue still in the refractory period at the end of the AV-node (as the fast pathway has already conducted the impulse and activated this part of the AV-node). When an extra premature atrial contraction occurs it encounters a refractory fast-pathway (which has a longer refractory period). It enters the slow pathway and when it reaches the end of this pathway it can conduct to the (now restored) end of the AV-node to the ventricles and back into the fast pathway. The result is a ventricular activation with a retrograde P-wave. If the slow pathway is restored when the impulse reaches the beginning (atrial side) of the fast pathway, the impulse can re-enter the slow-pathway and a re-entry mechanism is established. This is the mechanism of a typical AVNRT, which is found in 90% of the patient with an AVNRT. Two other forms of AVNRT exist that take a different route through the AV-node. Firstly there is an atypical AVNRT in which the impulse travels through the fast pathway and returns through the slow pathway. The result of this AVNRT is a retrograde P-wave which appears far from the QRS complex. Finally there is a rare AVNRT which in patients with two slow pathways. The impulse enters en re-enters through a slow pathway.<cite>Mazgalev, Robles</cite> | ||
====Clinical diagnosis:==== | ====Clinical diagnosis:==== |
edits