Myocardial and Pericardial Disease: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 420: Line 420:
|}
|}
Long-term alcohol abuse, >80g of alcohol per day (equivalent to 1 liter of wine) for more than 5 years, may lead to a dilated form of cardiomyopathy. Alcohol-induced dilated cardiomyopathy is the leading cause of non-ischemic dilated cardiomyopathy, accounting for approximately 50% of cases. Most probably genetic predisposition for DCM plays an important role, as excess alcohol consumptions prevails far more often than alcoholic cardiomyopathy (ACM).  Both the direct toxic effects of ethanol and its metabolites, as well as frequently occurring concomitant deficiencies of vitamins, minerals or electrolytes may adversely affect myocardial function (TABLE).
Long-term alcohol abuse, >80g of alcohol per day (equivalent to 1 liter of wine) for more than 5 years, may lead to a dilated form of cardiomyopathy. Alcohol-induced dilated cardiomyopathy is the leading cause of non-ischemic dilated cardiomyopathy, accounting for approximately 50% of cases. Most probably genetic predisposition for DCM plays an important role, as excess alcohol consumptions prevails far more often than alcoholic cardiomyopathy (ACM).  Both the direct toxic effects of ethanol and its metabolites, as well as frequently occurring concomitant deficiencies of vitamins, minerals or electrolytes may adversely affect myocardial function (TABLE).
Two stages of ACM are recognized when untreated. The first stage comprises asymptomatical ventricular dilatation in which diastolic dysfunction may be present, at least partly due to interstitial fibrosis of the myocardium. Fifty percent of asymptomatic patients have echocardiographic signs of LVH with preserved systolic function. The second stage is characterized by impairment of systolic function, and clinically overt heart failure. The prognosis of untreated ACM is comparable to DCM, but is far more favourable in patients that abstain from alcohol use, or dramatically reduce alcohol intake (to less than 60g of ethanol per day). Most of the improvement follows abstinence within 6 months, but ventricular function may improve for up to 2 years. Heart failure therapy may improve ventricular function, but has only been shown to benefit survival in patients that practise abstinence.
=== Metabolic cardiomyopathy ===
The group of metabolic cardiomyopathies comprises a heterogeneous group of myocardial disease secondary to a disruption in metabolism. Metabolic cardiomyopathy associated with diabetes mellitus is most common. Independent of its influence on hypertension or coronary artery disease, high levels of plasma glucose are increasingly associated with a direct deteriorative effect on ventricular function. Other examples consist of nutritional deficits such as thiamine deficiency, or storage diseases, and mutations in AMP kinase.
=== Takotsubo cardiomyopathy ===
The prevalence of takotsubo cardiomyopathy is largely unknown, but the syndrome predominantly affects women between 60 and 65 years of age. Patients with Takotsubo cardiomyopathy present with electrocardiographic features mimicking an acute coronary syndrome in association with elevated cardiac biomarkers, but in the absence of significant coronary artery disease. The disease has inherited its name from the distinct angiographic feature of apical ballooning, resembling an octopus-pot or Tako-tsubo. Left ventricular function is typically impaired in the apical and mid ventricular regions, with preserved basal function, although reverse patterns may be seen. High levels of catecholamine have been suggested to play an important role in the etiology of the syndrome, which can be associated with emotional or physical stress, or in extremes in case of subarachnoidal haemorrhage. This catecholamine storm may induce severe peripheral coronary spasm, leading to its clinical presentation. Treatment usually consists of aspirin, ACE-inhibitors or angiotensin receptor antagonists in case of preserved blood pressure, beta-blockers to reduce heart rate, and nitrates to counteract coronary spasms. LV function may restore rapidly within a few hours or days, even when admission ejection fraction was severely impaired, and clinical outcome is good although the disease may recur in 5% of patients.
=== Peripartum cardiomyopathy ===
Left ventricular systolic function impairment within 1 month of delivery, or during the first 5 months post partum, in the absence of pre-existing cardiac disease, and in the absence of another recognized cause for the cardiac dysfunction is termed peripartum cardiomyopathy.
Presentation is typically with features of left ventricular failure, although many features are undistinguishable from normal changes in pregnancy, due to which mild forms may not even be recognized. An inflammatory component has been suggested, in addition to malnutrition, viral infection, an abnormal immune response, and familial predisposition. Recurrence of the disease in subsequent pregnancies is noted, and makes the previously mentioned etiologies hard to explain. Most probably, peripartum cardiomyopathy results from predisposition to DCM, triggered to uncover by the high cardiovascular burden of the pregnancy.
Standard heart failure therapy can be instituted in peripartum cardiomyopathy, but the use of ACE-inhibitors and angiotensin receptor antagonists is contraindicated during pregnancy after the first trimester due to their possible adverse effects on the fetus. In extreme cases, the potential risks for the fetus should however be balanced against the critical need for preservation of ventricular function in order to provide both the mother and the fetus the best chance for a favourable clinical outcome. Pregnancy is also associated with a high risk of thrombo-embolism, as it is a hypercoagulable state per definition, which is enhanced by the presence of an impaired ventricular function in case of peripartum cardiomyopathy, and prophylaxis is therefore recommended.
Despite optimal treatment, LV function may normalize in as less as 50% of patients, and may deteriorate to end-stage heart failure in 15%. Potential recurrence in future pregnancies requires counselling of patients to prevent subsequent episodes of symptomatic heart failure and progression of ventricular dysfunction.
=== Tachycardia-induced cardiomyopathy ===
Persistently high heart rates, such as in sustained ventricular tachycardia, or associated with atrial fibrillation, results in heart failure when left untreated. Normalization of the heart rate by means of beta-blockade subsequently leads to normalization of ventricular function, and is therefore the cornerstone in treatment of tachycardia-induced cardiomyopathy.
=== Cardiomyopathy in muscular dystroph ===
Defined as primary disorders of skeletal and/or cardiac muscles of genetic etiology, muscular dystrophies were primarily described based upon the distribution and extent of skeletal muscle involvement. The involvement of the heart was commonly attributed to processes extrinsic to the hearts, resulting in restrictive lung disease, subsequent pulmonary hypertension, and secondary myocardial dysfunction. Intrinsic dysfunction is increasingly recognized as an important etiology for myocardial function impairment in the presence of muscular dystrophy. Typical forms of dystrophy are based on deficiency of dystrophin, of which mutations have been described in X-linked DCM. Furthermore, histological changes were found in the myocardium similar to those in skeletal muscles, which suggest a common etiology, and cardiac manifestations may be present even in the absence of myopathic symptoms.
Treatment of cardiac dysfunction is treated according to the nature of cardiac involvement. Conduction disorders may present which require pacing, and standard heart failure therapy may be instituted in case of ventricular dilatation and functional impairment. Ventricular tachyarrhythmia may be found in particular in myotonic dystrophia, and require the implantation of an internal cardiac defibrillator to prevent its associated sudden cardiac death.
401

edits