144
edits
No edit summary |
mNo edit summary |
||
Line 5: | Line 5: | ||
'''Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)''' refers to a hereditary disease that is associated with exercise (or adrenergic) induced ventricular arrhythmias and/or cardiac syncope and carries an increased risk of sudden cardiac death. | '''Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)''' refers to a hereditary disease that is associated with exercise (or adrenergic) induced ventricular arrhythmias and/or cardiac syncope and carries an increased risk of sudden cardiac death. | ||
==General features== | |||
*The diagnosis is based on adrenergic-induced bidirectional and polymorphic ventricular tachycardia. | *The diagnosis is based on adrenergic-induced bidirectional and polymorphic ventricular tachycardia. | ||
*The resting ECG is normal and the heart is structurally normal. | *The resting ECG is normal and the heart is structurally normal. | ||
Line 13: | Line 13: | ||
*The prevalence is estimated to be 1:10.000 in Europe. | *The prevalence is estimated to be 1:10.000 in Europe. | ||
Clinical diagnosis | ==Clinical diagnosis== | ||
The clinical diagnosis of CPVT is confirmed in an individual with polymorphic VT reproducibly induced during exercise tests, isoproterenol infusion or emotion and exercise. | The clinical diagnosis of CPVT is confirmed in an individual with polymorphic VT reproducibly induced during exercise tests, isoproterenol infusion or emotion and exercise. | ||
Line 20: | Line 20: | ||
Family members of patients with CPVT who also carry a mutation in a CPVT-associated gene are often asymptomatic. | Family members of patients with CPVT who also carry a mutation in a CPVT-associated gene are often asymptomatic. | ||
==Physical examination== | |||
Patients can present with symptoms of arrhythmias during exercise: | Patients can present with symptoms of arrhythmias during exercise: | ||
*Out-of-hospital-cardiac-arrest | *Out-of-hospital-cardiac-arrest | ||
*Syncope, pre-syncope (weakness, lightheadedness, dizziness) | *Syncope, pre-syncope (weakness, lightheadedness, dizziness) | ||
==ECG tests== | |||
[[File:Ventricular_complexes.png|thumb|300px|right]] | [[File:Ventricular_complexes.png|thumb|300px|right]] | ||
The resting ECG in CPVT is normal. However, there is a progressive ventricular ectopy as heart rate increases during exercise or isoproterenol infusion. Both the frequency and the complexity of the ventricular ectopy increase with the work load. It generally starts with monomorphic premature ventricular complexes (PVCs) and is followed bigemini and subsequently more complex arrhythmias, including doublets triplets, bidirectional ventricular tachycardia to polymorphic ventricular tachycardia. Most of the times, the arrhythmia is self-limiting. However, in some patients, especially if exercise is continued, repeated polymorphic VTs can deteriorate in ventricular fibrillation and sudden cardiac death. | The resting ECG in CPVT is normal. However, there is a progressive ventricular ectopy as heart rate increases during exercise or isoproterenol infusion. Both the frequency and the complexity of the ventricular ectopy increase with the work load. It generally starts with monomorphic premature ventricular complexes (PVCs) and is followed bigemini and subsequently more complex arrhythmias, including doublets triplets, bidirectional ventricular tachycardia to polymorphic ventricular tachycardia. Most of the times, the arrhythmia is self-limiting. However, in some patients, especially if exercise is continued, repeated polymorphic VTs can deteriorate in ventricular fibrillation and sudden cardiac death. | ||
Genetic diagnosis | |||
[[File:CPVT.jpg|thumb| | |||
==Genetic diagnosis== | |||
[[File:CPVT.jpg|thumb|200px|left]] | |||
CPVT is caused by mutations in genes involved in the calcium homeostasis of cardiac cells. Four disease-causing genes have been identified: the ryanodine receptor 2 gene (RyR2) (60%), the cardiac calsequestrin 2 gene (CASQ2) (1-2%), the calmodulin gene (CALM1) (<1%) and the TRDM gene (<1%). Mutant RyR2 channels have a gain-of-function effect, resulting in excessive calcium release during sympathetic activation. Mutant CASQ2 causes loss of buffering capacity for calcium of the sarcoplasmatic reticulum. The mutations cause excessive calcium in the myocyte cytosol generating depolarizing membrane currents, which in turn lead to delayed afterdepolarizations and cardiac arrhythmias. | CPVT is caused by mutations in genes involved in the calcium homeostasis of cardiac cells. Four disease-causing genes have been identified: the ryanodine receptor 2 gene (RyR2) (60%), the cardiac calsequestrin 2 gene (CASQ2) (1-2%), the calmodulin gene (CALM1) (<1%) and the TRDM gene (<1%). Mutant RyR2 channels have a gain-of-function effect, resulting in excessive calcium release during sympathetic activation. Mutant CASQ2 causes loss of buffering capacity for calcium of the sarcoplasmatic reticulum. The mutations cause excessive calcium in the myocyte cytosol generating depolarizing membrane currents, which in turn lead to delayed afterdepolarizations and cardiac arrhythmias. | ||
==References== | |||
<biblio> | <biblio> | ||
#tachycardia pmid=7867192 | #tachycardia pmid=7867192 |