Cardiac Arrest: Difference between revisions

Line 51: Line 51:
* <b>Electrocution:</b> Electrocution can result in multi-system injury and usually occur in the workspace in adult or at home in children. The direct effects of an electric shock on tissues, for instance paralysis of the respiratory system or muscles, VF in the myocardium, ischemia due to coronary artery spasm or asystole can result in a cardiac arrest. Electrical burns can complicate the resuscitation and care should be taken to avoid further complications resulting from these burns. Adequate fluid therapy is required if there is significant tissue destruction.
* <b>Electrocution:</b> Electrocution can result in multi-system injury and usually occur in the workspace in adult or at home in children. The direct effects of an electric shock on tissues, for instance paralysis of the respiratory system or muscles, VF in the myocardium, ischemia due to coronary artery spasm or asystole can result in a cardiac arrest. Electrical burns can complicate the resuscitation and care should be taken to avoid further complications resulting from these burns. Adequate fluid therapy is required if there is significant tissue destruction.
* <b>Electrolyte disorder:</b> Electrolyte abnormalities are among the most common causes of cardiac arrhythmias. Potassium disorders are commonly seen, especially hyperkalaemia has a high risk of malignant arrhythmias. During cardiac arrest treatment of these abnormalities is no different than in the normal clinical setting, and aggressive treatment of the elektrolyte disorder should be initiated.
* <b>Electrolyte disorder:</b> Electrolyte abnormalities are among the most common causes of cardiac arrhythmias. Potassium disorders are commonly seen, especially hyperkalaemia has a high risk of malignant arrhythmias. During cardiac arrest treatment of these abnormalities is no different than in the normal clinical setting, and aggressive treatment of the elektrolyte disorder should be initiated.
* <b>Hyperthermia:</b> Exogenous or endogenous hyperthermia can result in heat stress, progressing to heat exhaustion and results in heat stroke. Heat stress can provoke edema, syncope and cramps and is treated with rest, cooling and oral rehydration and salt replacement. Heat exhaustion is a systemic reaction to prolonged heat exposure and is accompanied by headaches, dizziness, nausea, vomiting, tachycardia, hypotension, muscle pain, weakness and cramps. Treatment is similar as in a heat stroke, but active cooling might be required in severe cases with ice packs or cold intravenous fluids. Heat stroke is a systemic inflammatory response with a core temperature above 40,6<sup>o</sup>C. It can lead to varying levels of organ dysfunction accompanied by mental changes. It can occur during high environmental temperatures or during strenuous physical exercise in high environmental temperatures. Rapid cooling of the victim should occur as soon as possible. Patients with heat-stroke usually have elektrolyte abnormalities and hypovolemae.
* <b>Hyperthermia:</b> Exogenous or endogenous hyperthermia can result in heat stress, progressing to heat exhaustion and results in heat stroke. Heat stress can provoke edema, syncope and cramps and is treated with rest, cooling and oral rehydration and salt replacement. Heat exhaustion is a systemic reaction to prolonged heat exposure and is accompanied by headaches, dizziness, nausea, vomiting, tachycardia, hypotension, muscle pain, weakness and cramps. Treatment is similar as in a heat stroke, but active cooling might be required in severe cases with ice packs or cold intravenous fluids. Heat stroke is a systemic inflammatory response with a core temperature above 40,6<sup>o</sup>C. It can lead to varying levels of organ dysfunction accompanied by mental changes. It can occur during high environmental temperatures or during strenuous physical exercise in high environmental temperatures. Rapid cooling of the victim should occur as soon as possible. Patients with heat-stroke usually have electrolyte abnormalities and hypovolemae.
* <b>Hypothermia:</b> In hypothermia (<35<sup>o</sup>C) it is difficult to detect signs of life. Therefore resuscitation should proceed according to standard protocols until the patient has reached normothermia. Second to resuscitation, warming of the body temperature by passive or active external and internal methods should be started. Examples of passive rewarming are drying and insulation of the body, whilst examples of active rewarming are infusion of warmed intravenous fluids or forced air rewarming. As a result of rewarming vasodilatation occurs and fluid administration may be required.Resuscitation during hypothermia is difficult, the thorax is stiff and the heart is less responsive to medication and defibrillation. Furthermore drug metabolism is slowed, resulting in increased plasma levels of medication. Medication should be administered at double intervals in patients <35<sup>o</sup>C and withheld in patient <30<sup>o</sup>C. Rhythm disturbances usually seen at rewarming after hypothermia are bradycardia, atrial fibrillation followed by VF and asystole. Bradycardia and atrial fibrillation revert to normal sinus rhythm as the core body temperature increases.  
* <b>Hypothermia:</b> In hypothermia (<35<sup>o</sup>C) it is difficult to detect signs of life. Therefore resuscitation should proceed according to standard protocols until the patient has reached normothermia. Second to resuscitation, warming of the body temperature by passive or active external and internal methods should be started. Examples of passive rewarming are drying and insulation of the body, whilst examples of active rewarming are infusion of warmed intravenous fluids or forced air rewarming. As a result of rewarming vasodilatation occurs and fluid administration may be required.Resuscitation during hypothermia is difficult, the thorax is stiff and the heart is less responsive to medication and defibrillation. Furthermore drug metabolism is slowed, resulting in increased plasma levels of medication. Medication should be administered at double intervals in patients <35<sup>o</sup>C and withheld in patient <30<sup>o</sup>C. Rhythm disturbances usually seen at rewarming after hypothermia are bradycardia, atrial fibrillation followed by VF and asystole. Bradycardia and atrial fibrillation revert to normal sinus rhythm as the core body temperature increases.  
* <b>Poisoning:</b> Accidental poisoning in children or by therapeutic or recreational drugs in adults are the main causes of poisoning, however rarely causes cardiac arrest. It is important to identify the poison to start antidote treatment or decontamination. During the BLS and ALS care should be taken when performing mount-to-mouth ventilation in the presence of certain chemical types of poisoning. Respiratory arrest and airway depression is more common after poisoning. Early intubation can prevent cardiac arrest and pulmonary aspiration. When confronted with a poisoning in an ALS setting, temperature should be monitored as hypo- or hyperthermia my occur after drug overdose. Furthermore, due to the slow metabolization or excretion of certain poisons the resuscitation can continue for a long period.
* <b>Poisoning:</b> Accidental poisoning in children or by therapeutic or recreational drugs in adults are the main causes of poisoning, however rarely causes cardiac arrest. It is important to identify the poison to start antidote treatment or decontamination. During the BLS and ALS care should be taken when performing mount-to-mouth ventilation in the presence of certain chemical types of poisoning. Respiratory arrest and airway depression is more common after poisoning. Early intubation can prevent cardiac arrest and pulmonary aspiration. When confronted with a poisoning in an ALS setting, temperature should be monitored as hypo- or hyperthermia my occur after drug overdose. Furthermore, due to the slow metabolization or excretion of certain poisons the resuscitation can continue for a long period.
585

edits