733
edits
No edit summary |
|||
Line 216: | Line 216: | ||
In general, a wide variety of factors can induce or contribute to the development of DCM including arterial hypertension, myocarditis, alcohol abuse or tachyarrhythmias. A subsequent increase in wall stress combined with activation of neurohumoral pathways induces complex cellular and molecular maladaptation, and programmed cell death finally leads to a decrease in the number of functioning cardiomyocytes. This process of cardiac remodelling itself results in systolic and/or diastolic dysfunction, leading to increased wall stress, and thereby creating a vicious circle of progressive systolic dysfunction (Figure 1). | In general, a wide variety of factors can induce or contribute to the development of DCM including arterial hypertension, myocarditis, alcohol abuse or tachyarrhythmias. A subsequent increase in wall stress combined with activation of neurohumoral pathways induces complex cellular and molecular maladaptation, and programmed cell death finally leads to a decrease in the number of functioning cardiomyocytes. This process of cardiac remodelling itself results in systolic and/or diastolic dysfunction, leading to increased wall stress, and thereby creating a vicious circle of progressive systolic dysfunction (Figure 1). | ||
[[Image:Process of cardiac remodelling. | [[Image:Process of cardiac remodelling.svg|thumb|400px|Figure 1. Process of cardiac remodelling]] | ||
The failing myocardium has several distinct factors promoting apoptosis of cardiomyocytes in vitro; cathecholamines, wall stress, angiotensin II, nitric oxide and inflammatory cytokines. Hence, medical management of DCM aims at antagonizing these pathways, reducing stress signalling in, and remodelling of the failing heart. | The failing myocardium has several distinct factors promoting apoptosis of cardiomyocytes in vitro; cathecholamines, wall stress, angiotensin II, nitric oxide and inflammatory cytokines. Hence, medical management of DCM aims at antagonizing these pathways, reducing stress signalling in, and remodelling of the failing heart. |